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Finite-size corrections in the X Y  model with a uniform 
magnetic field and a boundary field 

Hitoshi Asakawa and Masuo Suzuki 
Depmment of physics. University of Tokyo, Bunkyo-h, Tokyo 113, Japan 

Received 3 March 1995, in final form 8 lune 1995 

Abstract. The one-dimensional XY model with a uniform magnetic field and aboundary field 
is introduced. The present model is solved analytically at its critical point. Using the present 
analytical result. the finite.size corrections of the ground-state energy and the low-lying excited 
energies are evaluated. The pardtion function of the present model is a h  evaluated in the 
scaling limil. Through this calculation, the central charge and the conformal weights of the 
primary fields in the present model are oblained analytically. 

1. Introduction 

The investigation of the one-dimensional XY model with a uniform magnetic field has 
a history dating back half a century. The present model is described by the following 
Hamiltonian under the periodic boundary condition: 

where the symbol U; denotes the a-component of the Pauli matrices at site j .  In particular, 
the present model corresponds to the transverse king model when Jy = 0, and this model 
also describes the XY model when r = 0. 

In the present paper, we discuss critical phenomena of the one-dimensional XY model 
with a uniform magnetic field and a boundary field. In particular, we focus on the critical 
phenomena in the following two special cases, namely the transverse king limit and 
the ordinary XY case. As is well known, these critical phenomena belong to different 
universality classes. (This fact is briefly explained later.) Namely, the present model shows 
two kinds of critical phenomena in different regions of the relevant parameters. What 
influence does the boundary field exert on these critical phenomena of different universality 
classes? The physical reason for studying the present model is to answer this question. 

Although we do not trace the whole history here, we briefly review several properties 
of the present model, which are related to the present investigation, as preliminaries of our 
discussion. As was pointed out by Nambu [l], the present model can be expressed in terms 
of spinless fermions. In fact, the XY model [3,4] and the transverse king model 14.51 
were solved by means of the Jordan-Wigner transformation [Z] to obtain the dispersion 
relation. Then, it was found that the critical points of the ground-state phase transitions are 
given by Jx = J y  and Jx = r for the X Y model and the transverse king model, respectively. 
Moreover, one of the present authors OMS) generalized the present model and exactly solved 
the generalized model in terms of fermions [6]. Here we remark that the transverse king 
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model and the XY model can be solved not only under the periodic boundary condition but 
also under the open boundary condition L3.51. It was proved by MS [6,7] that the ground 
state of the present model (1.1) is equivalent to Onsager’s king model in a region of the 
parameters Jx ,  Jy and r. (It was also proved [8] that the present model is equivalent to 
the eight-vertex model with. the free-fermion condition (not Baxter’s eight-vertex model) 
in a parameter region.) Using the relationship obtained by MS [6,7], we find that the 
transverse king model with Jx = r corresponds to the two-dimensional king model at its 
phase-transition point, but that the XY model with J, = Jy does not. Therefore, we can 
identify the critical transverse king model with the critical model of the central charge c = i, 
because the two-dimensional Ising model at its critical point corresponds to such a minimal 
model in the conformal field theory (CFT) [9]. We can also evaluate the central charge by 
taking a continuum limit. In this limit, the critical transverse Ising model is transformed 
into the massless Majorana fermion field which has c = $ (see [IO], for example). In the 
continuum limit, we can transform the isotropic XY model into the massless Dirac fermion 
field which is equivalent to a massless scalar field [l I, 121 and has c = 1 (see [lo], for 
example). This means that the isotropic XY model belongs to the universality class of the 
two-dimensional planerotor model. 

In the present paper, we discuss the critical phenomena of the one-dimensional XY 
model with a uniform magnetic field and a boundary field, using the finite-size scaling 
technique [13-1S] based on the boundary CFT [16]. The present model under the periodic 
boundary condition and under the open boundary condition has been discussed in the context 
of finite-size scaling based on the CFT or the boundary CFT. See [17-22], for example. 

In section 2, we introduce the one-dimensional XY model with a uniform magnetic field 
and a boundary field and solve it analytically. Using the analytical solution. we evaluate the 
finite-size corrections for the ground-state energy of the present model in section 3. We also 
obtain the low-lying effective Hamiltonian of the model. We evaluate the central charge 
and the surface exponent of the present model without the boundary field, in section 4. We 
calculate the partition function of the present model, which is described by the characters of 
the primary fields of the Virasoro algebra, in section S. By using the partition function thus 
obtained, we discuss the operator contents of the present model, namely what conformal 
dimensions the primary fields have, in sections 6.7 and 8. Through the discussion, we can 
evaluate how the conformal dimensions of the primary fields, which exist in the present 
model, depend on the boundary fields. In section 9, taking a continuum limit of the present 
lattice model, we obtain the classical two-dimensional system on a half-plane to express the 
boundary field at the edge of the plane. 
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2. A ~ l y t i ~ a l  solufion of fhe model 

In the present section, we introduce the relevant model and solve it analytically. 

described by the following Hamiltonian: 
The one-dimensional XY model with a uniform magnetic field and a boundary field is 

Here, the parameters h and h‘ denote the magnitudes of the boundary fields. In the present 
paper, we discuss the present model on a linear chain with L sites, where L is a sufficiently 
large even number. 

By using the Jordan-Wigner transformation [2], we transform the present model (2.1) 
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into the following fermion model: 

L 
-2y E c J c j  - utctci - 2 h ' c l c ~  + L y  + 2h. (2.2) 

J=I 

Here, the symbol c: ( c j )  denotes the creation (annihilation) operator of a spinless fermion 
at site j. 

We diagonalize the present fermion model with a boundary. According to Lieb et al 
[3], if we express the Hamiltonian (2.2) in the following form: 

it can be rewritten by a canonical transformation 

(2.4) 

Here, {U:] are the eigenvalues of the matrix M ( A  - B)(A + E ) .  Thus, instead of 
diagonalizing the 2'-dimensional Hilbert space of the relevant Hamiltonian, we have only 
to diagonalize the L-dimensional matrix M .  The symbol & corresponds to the normal- 
mode fermion with the energy O k .  In the normal-mode expression (2.4), the quantity 
f xi  Aii + Eo of our model is equal to zero. An explicit form of the matrix M is shown 
in Appendix A. For the X Y  model ( y  = 0) under the free boundary condition, in other 
words, without the boundary field (h = 0). a scheme for diagonalizing the matrix M was 
shown by Lieb et nl [3]. Following their scheme, Pfeuty [5] derived the eigenvalues of 
M of the transverse king model (or = 1) under the free boundary condition (h = h' = 0). 
Moreover, Boccara and Sarma [U] and Micnas and Kowalewski [24] solved the transverse 
Ising model with the boundary field. We remark that Bugrij and Shadura [20] and Bariev 
and Peschel [21] solved the transverse king model with an x-direction field or an equivalent 
model. 

In the remaining part of the present paper, we discuss the following two critical models 
with the boundary field: (i) the critical transverse king model (or = y = 1). and (ii) the 
isotropic X Y  model (01 = y = 0). In these cases, we can extend the scheme [3] of Lieb 
et a! to diagonalize the matrix M. Detailed calculations are shown in appendix A. The 
analytical results thus obtained are given as follows: 

(i) In the critical transverse king model (or = y = l), the dispersion relation is given by 

k 
2 

OJk =4COS- 

where k is one of the roots of the following equation [24]: 

1 - ((1 + h)' - l)e-jk 1 - ( ( 1  + h')' - 1)e-jX 
l - ( ( l t h ) z - l ) e + i k  1-((1+h')2-I)e+ik 

) = 1. 

(ii) In the isotropic XY model (CY = y = 0), we have 

O J ~  = 2 ~ 0 s k .  
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Here k is shown to satisfy one of the following equations: 

H Asakdwa and M Suzuki 

We solve these equations to obtain the allowed (k) as the L roots. Though the roots are not 
always real numbers, {U:] are always positive semi-definite. In the rest of the paper, we 
restrict our discussion to h = h' 2 0. 

3. Finitesize corrections in the models 

In the present section, we evaluate the finite-size corrections for the ground-state energy in 
each model, by using the analytical solution obtained in the previous section. Moreover, 
we derive a low-lying effective Hamiltonian for each case. 

As was shown in the previous section, each of the models takes the following form, 
after the normal-mode expansion, 

Therefore, the ground-state energy is described as 

where the symbol k, denotes the mth root of (2.6) or (2.8). We can evaluate the finite-size 
corrections of E, using the Euler-Maclaurin formula 

+o(k) (3.3) 

By expanding Eg with respect to the powers of L, we obtain the following results: 
(i) In the critical transverse Ising model (or = y = 1, h > 0) 

E 8 = e L +  f - - - + o  
24L 2 

where 
2 4  f = 1 - - - --F((l + h)'- 1). 

4 
e -- 

x x x  
(ii) In the isotropic XY model (or = y = 0, h 2 0) 

where 

e = -- 2 f = 1 - - 2 2  - --F((2h) 2 ). 
x R H  

(3.4) 

(3.5) 

(3.6) 

(3.7) 
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Here, the functions F ( x )  and O(x) are defined as follows: 

tan-' (6) 9 - 1  4% F ( x )  = -1 - -- 
4x I l - x l  

and 

- arctanx 

- arctan I / x  

for x < 1 

for x =- 1 
O(X)  = (I 

H 

(3.8) 

(3.9) 

where tan-' takes the principal branch arctan for x < 1 and takes the branch arctan --R for 
x z 1. 

In each model, we can recognize the sound velocity U as 2 from the dispersion relation. 
When L + CO, the dispersion relation has zero at k = n (k = n /2 )  for the critical transverse 
Ising model (the isotropic XY model). The velocity is determined as a tangent of the 
dispersion relation about zero, namely OX - ulk - kol fork - ko, where kb = R (ko = n/2) 
for for the critical transverse king model (the isotropic XY model). 

Moreover, we can derive the low-lying effective Hamiltonian by expanding the 
dispersion relation about zero. In this region, we can linearize the dispersion relation 
as follows: 
(i) for the critical transverse Ising model (or = y = 1, h > 0) 

(ii) for the isotropic XY model (or = y = 0, h > 0) 

RlJ -- (1 - 302(2h)) + o (t) 
24L 

(3.10) 

(3.11) 

where we drop the bulk energy e L  and the surface energy f terms and neglect higher-order 
terms. In the latter model, we have two kind of fermions corresponding to two equations 
in (2.8). 

In particular, the first excited gap of each model is shown to be 

(3.12) 

nu 1 
L 2  

AEi = -- (1 - O(2h)) (3.13) 

respectively. 
In the critical transverse king model, the finite-size corrections for the energies do not 

depend on h. In contrast, the corresponding quantities of the isotropic XY model change 
as functions of the boundary field. 
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4. Central charge and surface exponent for h = 0 

In the present section, we discuss the critical phenomena of these systems by using the 
results obtained in section 3. As is well known [13], if the conformal dimension of the 
ground state is equal to zero, the finite-size corrections of the ground-state energy E, and 
the first excited gap above the ground state AEl are expressed as follows: 

E, = e L +  f - - + O  
24L 

and 

(4.1) 

respectively. Here, e and f denote the ground-state energy per site and the surface energy 
per site, respectively. We denote the central charge and the surface exponent by the symbols 
c and x., respectively. 

For h = 0, we can recognize the central charge and the surface exponent from the above 
results, as follows: 
(i) for the critical rraosverse king model (01 = y = I ,  h = 0) 

c = i  2 and x 6 -  - 1. 2’  (4.3) 
(ii) for the isotropic XY model (CY = y = 0, h = 0) 

(4.4) I c = l  and x, = I. 
In order to identify which operator acquires the surface exponent x s ,  we consider 
the following correlation function as shown in [231, which denotes the imaginary-time 
correlation of the order-parameter operator at the boundary site: 

r,(r) = (o~u;(s)o;(o)Io) = (fl(k))2e-cub (4.5) 
k 

(4.6) 
Here the symbol fi(k) denotes the first component of the eigenvector which belongs to 
the eigenvalue of the matrix M. The ground state is described by the symbol IO). We 
can evaluate the asymptotic behaviour of the correlation function for the both models as 
follows: 

0,?(7) = e  rn uj I e -m, 

1 r,(r) - l m e - z ~ - k o l  a - - 7 for r >> 1. (4.7) 

This means that the critical exponent ql1 equals unity, namely xa = qlr/2 equals 4 [=I. nus, 
we can expect that the critical exponent of the present correlation function corresponds to 
the surface exponent obtained from the finite-size correction. 

5. Partition functions of the models 

In order to discuss the operator contents of each model, we evaluate the partition function, 
which is described by the characters of the Virasoro algebra [13]. 

We evaluate the following partition function as a function of h: 

Z = Tr exp (-;) (5.1) 
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Here, the Hamiltonian 6 is defined as I? = W - e L  - f. using the parameter 
q exp[-rru/LT). As is well known [ 101, the present partition function is described 
as 

m 
XA =q-htA x d A ( N ) q N  (5.3) 

N=O 

where the symbol X A  denotes the character of the highest-weight irreducible representation 
of the Virasoro algebra. The central charge and the conformal dimension of the primary 
field are described as c and A, respectively. We describe the degeneracy of the states at the 
Nth level as d&(N). The symbol Jfb denotes a non-negative integer. By evaluating the 
partition function. we can recognize the operator contents of the model, i.e. what primary 
field exists in the present model. 

By using the low-lying effective Hamiltonian (3.10),(3.11) obtained in section 3, we 
obtain the following results in the scaling limit q * 0: 

. 

and 

(5.4.) 

(5.5) 

We remark that the latter partition function can be rewritten as follows, by using Jwobi's 
triple product identity: 

where 
CO 

v(q) = q k  - qn).  '(5.7) 
n=1 

In this scaling limit, the partition function of the critical transverse king model does 
not depend on the boundary field h. In contrast, in the isotropic XY model, the partition 
function depends on h through the function 0 ( 2 h ) .  

6. Operator contents of the transverse Ising model 

In the present section, we discuss the operator algebra Of the critical transverse king model 
with a boundary field. 

The partition function of the two-dimensional king model, whose boundary conditions 
are open in one direction and periodic in the other. is given as follows [20,26]: 

22, Ising = 4 -A fi ( 1 fq*+i ) - - X O  + x ~ / Z  (6.1) 
"=O 

where xo and x l p  are two of the three characters of the Virasoro algebra with c = $. The 
other character is x1/16,  as is well known. In the scaling limit, we can find the following 
relationship: 

(6.2) Zm,,, Idn@) = Z,, lsing for \J h (> 0). 
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We find that for any h, the critical transverse king model contains two kind of primary 
fields, whose conformal dimensions are 0 and 1. 

According to [20,21,26], the corresponding partition function of the transverse king 
model with an x-direction boundary field changes as a function of the magnitude of the 
boundary field. The x-direction and the z-direction boundary fields of the present model 
correspond to the magnetic field and the exchange interaction in the boundary row in the half- 
plane lattice, in terms of the corresponding classical system, namely the two-dimensional 
king model. This correspondence implies that there is a difference in the behaviour of the 
partition function. We discuss this point in more detail later. 

H Asnknwa and M Suzuki 

We remark that the following relationship holds: 

Z x d h  = 0) = (Zm {sing)'. (6.3) 
Namely, for any h, the transverse king model is equivalent to the two-dimensional king 
model (c = 4). and for h = 0 the XY model is equivalent to the double two-dimensional 
king models (c = 4 + f = I). We discuss the operator contents in the XY model with 
h > 0, in the following two sections. 

7. Review of the shifted U(1) KacMoody algebra 

in  order to discuss the operator algebra of the isotropic XY model with a boundary field, 
we need to recall the shifted U(1) Kac-Moody algebra [28]. In the present section, we 
briefly review the algebra as a preliminary. 

As is well known, the U(1) Kac-Moody algebra is defined by the commutation relations 
c 2  

(7.1) 12 

where LA = L-, and J,! = J-,  with m, n E Z. These generators of the present algebra. 
{L,) and (J,,,), are associated with the stress-energy tensor T(z) and the current J(z)  as 
follows: 

[ L m ,  L J  = (m -n)Lm+a + -m(m - I)&+n,o 

[ J m , L l = m J m + n  [ J m ,  JnI=m&n+n,o 

In other words 

We remark that the following relationship (the so-called Sugawara construction) holds: 

(7.3) 

Here, we introduce the U(l)-charge operator p .  

In fact, the relation 

[ T ( z ) ,  P] = 0 

(7.4) 

(7.5) 

(7.6) 
means that p describes the conserved charge. Next, we introduce an operator q ,  which is 
the canonical conjugate operator of p, namely 
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By using the operator q, we define the following operators: 

L,(O) e-ie4L,eieq and .I,,,(@) = e-ieqJ,eia~. (7.8) 

We can derive the explicit form of these operators by using the above commutation relations 
and the Sugawara construction formula, as follows: 

L,(o) = L,,, + OJ, + $Ps,,~ and .I,(@) = J~ + e ~ , , ~ .  (7.9) 
The operators thus obtained fulfill the following relationships: 

C 

(7.10) 

which are the same as the commutation relations of the U(1) KawMoody algebra. The 
algebra generared by the operators (L , (O))  and {Jm(0))  is called the shifted U(1) Kac- 
Moody algebra [28]. 

IL,(o). L(QI = (m - n ) ~ m + n ( o )  + --m(m2 - 1)6m+n.o 12 
[Jm(@),  L(@)l = m J m t n ( @ )  [ J m ( @ ) ,  J n ( @ ) l  = m&ntn,o 

We consider the following primary conformal field [29]: 

US(Z) = exp(zL-1) exp(iOq)exp(-zL-~). (7.1 1) 

We evaluate the conformal dimensionality of the present operator. By definition, for z -+ w, 
we have 

(7.12) 

where A@ denotes the conformal dimensionality of U@(z) .  Therefore, we find the relationship 

(7.13) 

By evaluating the left-hand side of this formula, we can obtain Ae. In fact, since the 
following relation holds: 

Ae IolU,i(o)T(z~u@(o)lo) = 7. 

(7.14) 

we have 
0212 ~olusi(o)T~z)u,(o)lo) = 7. (7.15) 

Ae = I O z  2 '  (7.16) 

Thus we obtain 

We define the highest-weight state / A .  C), by 

(7.17) 
JolA, C) = CIA, 9) LolA, 4) Ala ,@)  
JmIA.$)=LmlA.@)=O ( m > 1 ) .  

Then, from the Sugawara construction formula, we find 

A = f@'. (7.18) 

We can evaluate the character function [28] in the shifted U ( 1 )  Kac-Moody algebra with 
c = 1, which corresponds to the irreducible representation specified by @ 

(7.19) 
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where 
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Lo(8) = La + 8Ja + ;S2 Jo(8) = Jo + 8 (7.20) 

(7.21) 

Here, the symbol 'tr' means the summation over all the secondary fields generated from 
the primary field specified by 4. From this character function (7.19). the conformal 
dimensionality A(& 8) of the primary field is concluded to be given by 

(7.22) 

Every quantum system on a chain with boundaries, which gives a representation of the 

A(#; 8) = $(rb +8)'. 

algebra, is described by the Hamiltonian 
7z X C  

H ( 9 )  = -Lo(@ - - 
L 2AL 

(7.23) 

where we subtract the non-universal bulk and the surface terms. Consequently, we can 
evaluate the finite-size correction for the ground-state energy as follows: 

(7.24) 

where we have used Lolo) = 0 and &IO) = 0 for the vacuum 10) IA = 0,4 = 0). For 
9 = 0, the present result reduces to the well known relationship derived in [14, 1.51. We 
find that the term $$ corresponds to the conformal dimensionality of the ground state. 
In fact, according to the character function, the lowest conformal dimension equals to 
A(@ = 0 8) = LO2 This dimensionality comes from the primary field Ue(z) .  In the next 

1. ' section, we identify the parameter 8 as the effect of the boundary field. 

8. Operator contents of the XY model 

In the present section, we discuss the operator algebra of the isotropic XY model with a 
boundary field. 

At first we identify the parameter 8 in the shifted U(1) Kac-Moody algebra [28] as 
the function 0(2h)/2 in the isotropic XI' model. As is well known [lo], the chiral Dirac 
field gives a representation of the U(1) Kac-Moody algebra with c = 1. By using the 
generators of this algebra represented by the Dirac field, we can describe S(8). By 
comparing the Hamiltonian H ( 8 )  thus obtained and the low-lying effective Hamiltonian 
 he^ of the isotropic XY model, we can directly identify the parameter 6 as 0(2h)/2 in the 
following way. 

We consider the chiral Dirac field 

W(2) = c @ n z - " - i  (8.1) 
"€2 

where 
1 

@ - - (@,!I) +i@,?) {@$), @,?) = G ~ + ~ . O S ~ , ~ .  (8.2) " - A  
Here, @,?' = @!:. Since the stress-energy tensor and the current are described as 

T ( z )  = - : W t ( z ) a Y ( r )  : J ( 2 )  =: W'(z)W(z) : (8.3) 
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we can evaluate the generators of the U(1) Kac-Moody algebra, namely (Lm], 
following their definitions. In particular, we have 

(8.4) 

Here, we introduce new fermion operators as follows: 

6, = qmV = @!m and q i  = @+,,-I, qm = @-,,-, form = 0,1, .  . . . t 

( 8 . 3  

Then the operators (&,,I and (q , ]  satisfy the fermion$ anticommutation relation. By using 
these operators, a representation of the Hamiltonian H ( 0 )  (7.23) in terms of the Dirac field 
is given as follows: 

This takes the same form as the low-lying effective Hamiltonian of the isotropic XY model 
(3.1 I), when e = 0(2h)/2.  Namely, we can identify the effect of the boundary field as 
the parameter 63 in the U(1) Kac-Moody algebra. In other words, we find that the present 
isotropic XY model is also a representation of the U(1) Kac-Moody algebra. In fact, by 
tracing the above calculation inversely, we can describe all the generators of the algebra in 
terms of the fermions in the isotropic XY model (3.11). 

Moreover, we evaluate the partition function of the Dirac field as follows, 

= - I Cqt(n+fe)' 
v(q) E Z  

where q = e-"/LT. The last form of ZO is described as 

(8.7) 

with x&, I )  defined by (7.19). Therefore we obtain the conformal weight of each primary 
field in the present Dirac field as follows: 

n E Z. (8.9) 

Next, we construct fi@) in terms of the chiral Gaussian field and evaluate the partition 
function, so that we compare the partition function thus obtained with Zxr. As is well 
known [lo], the present field also gives a representation of the U(]) Kac-Moody algebra 
with c = 1. The chiral Gaussian field takes the following form [27], which is compacted 
to a circle of radius R: 

A(n; e) = f (n + e)2 

(8.10) 

where 
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Then, the allowed eigenvalues of p are given by M I R  (M E 25). The stress-energy tensor 
and the current are described as 

T ( Z )  = -4 : ( a c w 2  : / ( e )  = iaO(z). (8.12) 

Thus we can represent the generators of the U(l)  Kac-Moody algebra in terms of the 
present field. In particular we have 
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W 

Lo = + CO[-.CC. Jo = O[O (8.13) 
"=I 

where (YO = p. Here, we introduce boson operators as follows: 
1 

(8.14) 
1 

U ---a" a! = 3 ~ - n  for n = 1,2, .... 
n -  f i  

Then the operators [U*] satisfy the bosonic commutation relation. By using these operators, 
a representation of the Hamiltonian A(8) (7.23) in terms of the Gaussian field is given as 
follows: 

We can evaluate the partition function of the Gaussian field as follows: 

where q The last form of ZG is described as 

(8.15) 

(8.16) 

(8.17) 

with xMIR(q, 1) defined by (7.19). Therefore we obtain the conformal weight of each 
primary field in the Gaussian field as follows: 

(8.18) 

We find the following relationship: 

Zo(R = 1) = ZD for V 8. (8.19) 

This relationship is extremely natural since the both fields are directly connected with each 
other by the bosonization formula [ I  I ,  121 

(8.20) V(z) =: expiQ(z) : . 
Then we find that the following relationship holds: 

ZG(R = I )  = ZXY (8.21) 
when we identify 8 as 0 ( 2 h ) / 2 .  

Through the discussions in the present section, we find that the isohopic XY model 
with a boundary field gives a representation of the shifted U(1) Kac-Moody algebra, which 



Finite-size corrections in the X Y  model 469 1 

is a Virasoro algebra with c = 1 .  Namely, ZXV is described by the character functions of 
the algebra as follows 

where 0 = 0(2h) /2 .  Therefore we obtain the conformal dimensions of all the primary 
fields to be 

The dimensionality changes as a function of the boundary field 

9. Continuum limit of the models 

In the present section, we consider the continuum limit of the two models, namely 
the transverse king model and the X Y  model, with boundary fields. Then we explain 
qualitatively why the conformal dimensions change (d? not change) in the former (latter) 
model. 

As is well known [ 101, the Lagrangian density of the critical transverse king model in 
the continuum limit is described as the massless Majorana fermion fields {@, $1 as follows: 

(9.1) 

Here, we take the Euclidean coordinate (5,  x ) .  The relevant model is defined on the ship Q 
with the width L. namely 0 < x < L and -CO c 5 < +W. Then, in terms of the Majorana 
field, the boundary field B is described as follows: 

.Cw = 6 (a, - ia,) $ + @(a, + ia,) @. 

B = hu: + hui - h $9. 
an 

(9.2) 

Here, the symbol aR denotes the edges of the present strip, namely 

( (5 ,  x)lr E (-CO, +CO), x = 0 or L )  

Therefore, the sum means the integration on the edges. 
In contrast, as is also well known [lo], the Lagrangian density of the isotropic XY 

model in the continuum limit is described as the massless Dirac fermion field. Moreover, 
by bosonization I l l ,  121, we can obtain the following bosonic form, namely a massless 
scalar field (0: 

(9.3) 
2 

CS = f (%@) a2 = a; - a:. 
In this model, we take the Minkowskian coordinate (t, x ) .  The relevant model is also 
defined on the strip R with the width L, namely 0 < x < L and -W < t c +W. Then, in 
terms of this scalar field. the boundary field B is described as follows: 

B - h ax(O - h M : cos V'&I : +h M : cos && : (9.4) 
sn an, an2 

where It4 is an arbitrary constant with the mass dimensions. The symbol aRl and aR2 denote 
the both edges of the strip R, namely they correspond to { ( t ,  x)lr E (-CO, +CO), x = 0) 
and ( ( f ,  x ) l l  E (-CO, +CO), x = L], respectively. Therefore, formally we have as2 = as21 
t aR2. 
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The above two continuum models are defined on the ship S2, which is described 
as ((xo. x~)lxo E (-W. +CO), XI E [O, Lll ,  where xo = r or t and XI = x .  By the 
transformation 

we deform the strip into one half of the complex plane of z with Im z > 0. Then, especially 
anl and anz are transformed into the real axis with Rez z 0 and that with Rez < 0, 
respectively. 

In the present Majorana fermion field on the half t plane, we find that the boundary 
field i$@ does not violate the ZZ symmeny, because this boundary field corresponds to the 
energy-density operator in terms of the two-dimensional king model. That may be one of 
the reasons why the conformal dimensions of the primary fields, which the present model 
contains, do not change. 

On the other hand, in the present scalar field on the half z plane, the boundary field 
a,q does not violate the U(1) symmetry. However, the field proportional to : cos&q : 
violates the symmetry. Moreover, there exists a discontinuity of the boundary field at z = 0, 
unless Q takes specific values. We expect that this is one of the reasons why the conformal 
dimensions of the primary fields, which the present model contains, vary. 

10. Summary 

The critical transverse king model on an open chain gives a representation of the Virasoro 
algebra with c = for any h.  That is, the conformal dimensions of the primary fields do 
not change, even if the boundary field becomes finite. In contrast, the isotropic XY model 
with a boundary field gives a representation of the U(1) Kac-Mdy algebra which is a 
Virasoro algebra with c = 1. The conformal dimensions of the primary fields change as 
a function of the boundary field. The difference between these models may come from 
the difference of the property of the boundary field emerging on the edge of the half-plane 
after the transformation. In terms of the original lattice model, the boundary field at the 
end points takes the same form in both models. However. since each of these models has 
different symmetry, the role of the boundary field is also different. 
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Appendix A 

Here we explain how to diagonalize the L x L matrix M shown in section 2. 
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The present matrix of the Hamiltonian (2.2) takes the following form: 

M =  

where 
a 0 = 4 y ' + 2 ( 1 + ( ~ ~ )  a 1 = 4 y  a z = l - a  2 

bo = 4(y + h)* + (1 - 0)' bl = Z h ( l + a ) + 4 y  (A.2) 

We consider here only the following two cases, namely (Y = y = 1 (the critical 
transverse king model) and (U = y = 0 (the isotropic XY model). 

In the case of (Y = y = I ,  we assume that the nth component of the eigenfunction takes 
the following form: 
f,(k) = A+(k)eik(L-"+" + A  - (k)e-ik(L-n+l) (-4.3) 
Then, with respect to higher-order from the 3rd up to the (L - 2)nd components, the 
eigenvalue equation Mf(k) = E(k)f(k) holds, where E(k) = (4cos(k/2))'. Moreover, 
when the relationship 

CO =4(y + h')* + ( I  +a)' CI = 2h'(l -(U) +4y. 

n = 2,3, . . . , L - 1. 

a = (1 + e-ik - (1 + h')') eiK 
b = (2 +e'* + e-ik - (1 + h)'(1 +e-")) eikL 

is satisfied, ' ? eigenvalue equation holds for all the components. Then, fl  and f L  are 
expressed by using A+, A- and k. In order that a non-trivial solution (A+, A-) # (0,O) 
exists, the determinant of this 2 x 2 matrix in (A.4) must be zero. This condition leads us 
to (2.6), the equation that determines the allowed k. 

In the case of CY = y = 0, we assume that the nth component of the eigenfunction takes 
the following form: 

A+(k)e"" + A_(k)e-'" n = 4,6 , .  .. L - 2 
(A.6) 

+ B-(k)e-ik'L-"+" n = 3 , 5  ,..., L-3.  fn(k) = B+(k)eik(L-n+l) 

In this case, in order that the eigenvalue equation Mf(k) = E(k)f(k), where 
E(k) = (2cos(k))', should hold for all the components, the following relation must be 

E+ 2 E-  )-. (A.7) 
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The condition that the determinant of this 4 x 4 matrix in (A.7) should be zero gives us the 
equation of the allowed k (2.8). 

H Asakawa and M Suzuki 

Appendix B 

Here we briefly discuss the solutions of the equations of k, namely (2.6) and (2.8) with 
h = h'. 

At first, we consider the critical transverse king model. We can find L real solutions 
of eq. (2.6) in the region 0 < k < n, for 0 < E  < 1, where E c (1 + h ) z  - 1. In fact, by 
using the following rewritten form of (2.6): 

we can confirm that L solutions exist on the real axis of the complex k plane with 0 < k < n. 
However, for E z I ,  we obtain only L - 2 real solutions in the region 0 c k < n. The 
remaining two solutions exist on the imaginary axis of the complex k plane, and takes the 
following form: 

k = i iK e' = E + 6 ~ .  (B.2) 
Here, the symbol 6' denotes the correction term which depends on L, and is proportional 
to E - ~ .  Therefore. we find that the finite-size corrections of eirx, with respect to the the 
powers of I/L, are equal to zero. 

Next, we discuss the isotropic XY model. In the following rewritten form of (2.8): 

For 0 < E c 1 with E Zh, we find L real solutions in the region 0 < k < H ,  as for the 
previous model. For E P 1, the present model also has L - 2 real solutions and two pure 
imaginary solutions. The imaginary solutions take the same form, equation (B.21, as those 
of the previous case, though the definition of E is different. 
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